Как избежать образования сосулек зимой на крышах

В последние годы зима у нас неустойчивая: оттепели часто сменяются заморозками, заморозки — оттепелями. Из-за таких погодных «качелей» появление сосулек на карнизах и выступах стен неизбежно, как и обледенение водостоков. При проектировании домов архитекторы обычно учитывают эту проблему. Однако конструктивные строительные решения далеко не всегда могут полностью устранить причины льдообразования.

Современная борьба с сосульками
Чем проще профиль крыши и больше угол ее скатов, тем меньше шансов у льда. Самое милое дело — крыша простой формы с уклоном ската не менее 30°. Наличие холодного проветриваемого чердака и отсутствие желобов также сокращают шансы «ледникового периода». А вот мансардные окна, балкончики, башенки, внутренние разжелобки (ендовы) и т.п. в прямом смысле льют воду на мельницу образования снежного покрова на крыше, о вредных и опасных последствиях которого вам рассказывать не нужно.
Мансардные окна, балкончики, башенки, внутренние разжелобки (ендовы), архитектурные детали в прямом смысле льют воду на мельницу образования снежного покрова на крыше и прочих конструкциях
Соответственно, все эти архитектурно-строительные детали способствуют появлению наледи и сосулек на кровле и водосточных системах.

Вспомним общедоступную физику

Наледь образуется не постоянно в холодную погоду, а в феврале-марте, когда температура воздуха скачет от +3…+5 °С днем до -6…-10 °С ночью. Именно поэтому эксплуатационный режим систем, о которых пойдет речь, устанавливается на уровне не ниже, чем +5…-15°С.
Есть две причины появления наледи на крышах и водосточных системах:

  1. расход тепла через кровлю,
  2. скачки температур от плюсовых к минусовым во время оттепелей.

Снег на крыше под лучами солнца или из-за утечек тепла из комнат тает, и вода течет по карнизам и водостокам. Замерзая при переходе через ноль, она превращается в лед. В желобах и водосточных трубах образуются ледовые пробки. Так как лед тает медленнее снега, то при новом потеплении ледовые пробки могут увеличиваться.
Расход тепла через перекрытия дома и кровлю приводит к тому, что температура центральной части крыши становится выше температуры окружающего воздуха. В основе этой «беды» лежит слабая теплозащита подкровельного пространства и нулевая кровельная вентиляция. Тающий снег на скатах постепенно сползает, а талая вода замерзает на обдуваемых ветерком свесах крыши, образуя наледи и сосульки и закупоривая водосток.
Тающий снег на скатах постепенно сползает, а талая вода замерзает на обдуваемых ветерком свесах крыши, образуя наледи и сосульки и закупоривая водосток
Заторы воды на кровле в ненастные сезоны приводят к протечкам, портящим верхние этажи домов и фрагменты фасадов около водостоков и ендов. В подкровельном пространстве становится сыро. Это неизменно повышает теплопроводность утеплителя (результат, обратный желаемому) и провоцирует появление грибков и плесени на деревянных стропилах.
Лед в водостоках не только деформирует, но может даже разрушить элементы водосточной системы. Кто из нас не видел сломанные водостоки и разорванные льдом трубы? Висящие на карнизах крыш сосульки не только портят внешний вид дома (с этим еще можно смириться на пару суровых недель), но и угрожают жизни хозяев и случайных прохожих.

Висящие на карнизах крыш сосульки не только портят внешний вид дома (с этим еще можно смириться на пару суровых недель), но и угрожают жизни хозяев
Самый эффективный способ справиться с этой проблемой — использование кабельных антиобледенительных систем. Этот метод повсеместно применяют в северных странах. Смысл его заключается не в борьбе с уже образовавшейся наледью, а в предотвращении ее образования.
Не дать воде заледенеть на элементах кровли и в водостоках, обеспечить возможность ее отвода по водостокам в ливневую канализацию — главная задача кабельной антиобледенительной системы. Согласитесь, что для подогрева талой воды понадобится меньше теплозатрат (расхода электроэнергии), чем для растапливания льда.

Кабельная антиобледенительная система

Суть устройства кабельных антиобледенительных систем проста: на крыши и в водосточные системы укладывается нагревательный кабель.
Для плоской черепицы предусмотрены специальные клипсы крепления кабеля. Фото: profstroy33.ru
При подключении он греется, лежащий рядом снег тает и не превращается в лед, а стекает с крыш по водостокам.
Кабель греется, и лежащий рядом снег тает. Фото с сайта icedamcompany.com
А там уже установлены свои подогревающие кабели. Главное — не дать воде заледенеть.
Система включает греющие кабели, силовые провода, датчики, пульт управления, распределительные коробки и крепеж. Электрокабели питаются от бытовой сети с напряжением 220 В. Раз так, то при проектировании и установке системы необходимо следовать требованиям Правил устройства электроустановок (ПУЭ). Вы найдете их в статье Обычное привычное электричество.
Помимо защиты от перегрузок, система электропитания обязательно должна включать, датчики контроля изоляции или устройство защитного отключения (УЗО). Все это, вместе с заземленной оплеткой греющего кабеля, обеспечит полную электробезопасность антиобледенительной установки.
Работой кабелей «руководит» автоматический терморегулятор, снимающий нужную информацию с установленных на кровле датчиков — температуры, относительной влажности воздуха, наличия на кровле воды.
Схема коммутации отдельных элементов системы. Фото: evrolain.com.ua
После получения сигналов о климатических условиях, провоцирующих образование льда, терморегулятор дает «добро» на включение электроэнергии по петлям греющего кабеля, который начинает греться сам и выделять тепло. При хорошей погоде терморегулятор автоматически отключает нагрев. Тут надо иметь в виду, что лишний перегрев — это выброшенные деньги, которые вам еще могут пригодиться.
Описанная ситуация — это высший пилотаж, подразумевающий 100% комплектность нагревательной системы. Но можно немного сэкономить: отказаться от датчиков и терморегулятора и управлять системой в ручном режиме.
Комплект оборудования кабельного обогрева состоит из:

  • греющего сегмента, включающего нагревательные кабели и элементы их закрепления;
  • распределительного сегмента (в полной комплектации), состоящего из силовой сети для питания нагревательных кабелей, информационной сети, передающей сигналы от датчиков к системе управления, и распределительных коробок;
  • автоматической системы управления.

Куда ставить?

Прокладывать греющий кабель исключительно по краю кровли и не обогревать водосточные трубы не имеет резона: талая вода стечет с крыши, но, попав в холодный водосток, тут же замерзнет.
Этот снимок автор статьи сделал в Норвегии. Там не найти ни одной водосточной трубы без греющего электрокабеля. Переизбыток водопадов дарит этой стране дешевую электроэнергию
Особенно нужен обогрев на сложных элементах кровли: на внутренних углах, около выступающих конструкций (фонари, трубы, мансардные окна и т. д.), а также на плоских площадках. На плоских крышах и крышах с малым уклоном (до 30°) нагревательный кабель обычно прокладывают либо по всей поверхности (сколько тут «набежит» электричества!), либо на приемных водосточных воронках и участках, прилегающих к водостокам.
Электрический кабель прокладывают по краю кровли, внутри желобов и опускают в водостоки по внутренней поверхности трубы и воронки. Внизу у водосточной трубы, на вырезанном изливе провод выполняется в виде петли.
Монтаж систем обогрева труб и кровли. Фото с сайта soldim-heating.ru
На карнизном свесе нагревательный кабель размещают точно по кромке. Если не следовать этой рекомендации, то кабель растопит снег, но талая вода, дойдя до холодного края кровли, замерзнет и превратится в сосульки. Эффект будет обратный, а с учетом расходов на электроэнергию — минусовой.
Для того чтобы зафиксировать кабель в нужном положении и исключить его спутывания и перехлесты, применяют специальные зажимы и крепеж.
Кабельный обогрев желоба. Фото с сайта otopim-dom.ru
Расчетная мощность системы зависит от:

  1. площади крыши и ее конфигурации,
  2. длины водосточных труб и лотков.

Ее вычисляют по длине греющего кабеля и фактически потребляемой мощности на 1 пог. м кабеля, которая обычно составляет 25-60 Вт. Вот тут уже можно взять в руки карандаш и заняться примерными расчетами конкретно для вашего дома или коттеджа.
Пример расчета:
Скажем, на ваш дом садоводческое товарищество выделяет 6 кВт, то есть 6000 Вт. Давайте один киловатт зарезервируем для холодильника, телевизора и дежурного освещения. Таким образом, у вас есть 5000 Вт для прогрева рабочих кабелей. Разделим 5000 Вт на 50 Вт/1 погонный метр. Получаем 100 м кабеля. Таким образом, вы можете оперировать длиной кабеля в 100 метров. Теперь подсчитайте периметр крыши и длину водосточных труб вашего загородного дома. Для скромного коттеджа такой длины кабеля может и хватить.
Тут еще следует помнить, что такое «разбазаривание» электроэнергии, направленное на борьбу с объективными природными явлениями, длится сотню-другую часов в год.

Как устроены нагревательные кабели?

Основной технический параметр кабеля — мощность на единицу длины. Другими словами, важно, сколько тепла выделит один погонный метр кабеля.
Нагревательные кабели. Фото с сайта icedamcompany.com
Дополнительные требования с учетом работы «на открытом воздухе» также весьма строги:

  • электробезопасность,
  • атмосферостойкость,
  • стойкость к УФ-излучению,
  • механическая прочность.

Существует два типа греющих кабелей:

  1. резистивные с постоянным удельным сопротивлением;
  2. саморегулирующиеся со специальным греющим элементом, изменяющим свою мощность в зависимости от внешней температуры.

Первые состоят из металлической токопроводящей жилы, выделяющей тепло, изоляции, медной экранирующей оплетки и высокопрочной внешней оболочки из ПВХ или фторполимера. Различаются одножильные (одна греющая жила) и двужильные (одна жила греющая, вторая — соединительная) кабели. Вторые стоят дороже, но монтируются легче .
Одножильный кабель подключают к питающей сети с обоих концов, двужильный — с одного. На другом конце ставят заглушку, соединяющую греющую и соединительную жилы. Выбор типа кабеля зависит от площади и конфигурации обогреваемых участков крыши.
Основной порок резистивных кабелей — неизменное сопротивление по всей длине, и поэтому они везде греют одинаково. Это приводит к излишним затратам энергии, так как условия теплоотдачи на протяжении всей длины кабеля могут быть различными.
Например, слетевшая с деревьев и накрывшая собой часть кабеля листва заметно изменяет теплотехнические условия эксплуатации этого отрезка. Поэтому на некоторых участках резистивный кабель будет перегреваться, а это неоправданно повысит затраты на его эксплуатацию. А под листвой он и вовсе может перегреться и перегореть. Такой кабель требует постоянного наружного контроля и ухода: например, уборки веток, опавшей листвы и прочего мусора с крыши.
Кроме резистивных, есть еще саморегулирующиеся кабели, автоматически меняющие тепловыделение в зависимости от температуры окружающей среды и способные экономно расходовать электроэнергию. Причем это свойство локальное: каждый участок кабеля реагирует на окружающие именно его условия.
Это поистине высокие технологии. Не углубляясь в них, скажу, что между двумя токоведущими жилами расположен подключаемый к ним нагревательный элемент — полимерная матрица с токопроводящим наполнителем. У последнего большой коэффициент теплового расширения. Поэтому когда становится холодно, материал греющего элемента матрицы сжимается, сопротивление его уменьшается, а величина тока, проходящего через матрицу, возрастает. Разумеется, тут же возрастает и тепловыделение. И наоборот: при повышении температуры воздуха сопротивление увеличивается, а количество теплоты уменьшается, что предотвращает перегрев. Такому кабелю не страшен покров из прошлогодних листьев.
Выбор того или иного типа кабеля зависит от особенности каждой крыши и финансовых возможностей владельца дома.

Работа для профессионалов

Спроектировать и инсталлировать кабельную систему антиобледенения собственными силами дано далеко не каждому. Особенно это касается вопросов электробезопасности. Проанализировать ситуацию, провести грамотный расчет системы, выбрать качественный материал и надежное оборудование — для этого требуется опыт профессионалов или одаренных Кулибиных. Необходимо учесть, что:

  • Определяющее требование для установки антиобледенительной системы — наличие свободной мощности электросети.
  • Работы по инсталляции кабелей выполняются только при полном отсутствии снега-дождя при t не ниже -5°С.
  • И еще одно обязательное условие: все электрические подключения должны выполняться только дипломированным электриком.

Работы выполняются в следующей последовательности.

  1. Желательно еще до укладки верхнего слоя кровли прокладывают распределительную сеть и устанавливают распределительный шкаф.
  2. После укладки кровли и водосточной системы устанавливают греющую сеть и ставят датчики.
  3. Затем монтируют управляющую и коммутирующую аппаратуру и испытывают систему.

Смонтированный на кровле нагревательный кабель предохраняют от механических повреждений снегоотбойником. Для надежной фиксации кабеля используют специальную монтажную ленту, сетку с морозоустойчивыми хомутами, специальные пластиковые крепления.
Шаг между креплениями не должен превышать 300-350 мм. Требуется следить за тем, чтобы линии кабеля не контактировали и уж тем более не переплетались между собой. В начале осени проводится тестовый запуск для проверки готовности системы к работе в холодный период.
Цена установки антиобледенительных систем широко варьируется в зависимости от применяемых материалов и оборудования, режима работы системы управления и характеристик крыши. Выбрать подходящую систему вы можете на нашем маркете, где собраны предложения крупнейших интернет-магазинов.
Дорогие системы характеризуются повышенной надежностью и дольше служат, и, что особенно важно, позволяют существенно снизить потребление энергии. Ведь расходы на оплату электричества — основной недостаток кабельного обогрева. Хотя он во многом зависит от расчетливой и бережной подачи напряжения на тепловой кабель.
При условии грамотного проектирования и монтажа применение систем антиобледенения крыши на основе греющих кабелей позволит вам полностью исключить образование наледи и обеспечить работоспособность водостока. И что самое главное, кровля останется целой и невредимой независимо от превратностей погоды и климата.

Автоматизация

Любое современное техническое решение подразумевает наличие управляющей электроники. Системы антиобледенения не являются исключением. Управляющая электроника выполняет две основные функции: своевременное включение и отключение нагревательной системы для её правильной работы и экономия электроэнергии. Ручное управление является крайне нежелательным решением, однако может быть реализовано на некоторых небольших проектах с саморегулирующимся кабелем (водопроводные трубы, ливневая канализация, септик).

Стоимость автоматизации системы антиобледенения начинается от 2000 руб. Самое популярное решение — терморегулятор с датчиком температуры. Регуляторы разных моделей и производителей работают примерно по одному принципу: пользователь выставляет температурный диапазон (максимальную и минимальную температуры), в котором система должна работать. Как правило, это температуры в интервале от −5 до +5°C.

Существует несколько способов избавления от наледи на автомобильных дорогах и пешеходных зонах: фрикционный, тепловой, механический, химический. Каждый из способов имеет свои преимущества и недостатки. Рассмотрим каждый подробнее.

● Фрикционный
Этот способ борьбы с зимней скользкостью подразумевает россыпь на поверхность дороги мелких (от 2 до 6 мм) минеральных материалов – песка, измельченного гравия, щебня, различного шлака. Данный метод не устраняет ледяной наст, но за счет высоких абразивных свойств повышается коэффициент сцепления колес и подошв обуви с обледенелым дорожным покрытием.

Преимущества:
• Мгновенное действие;
• Простота использования;
• Экономичность;
• Минимальное отрицательное воздействие на автомобили и дорожные сооружения.
Недостатки:
• Не устраняет проблему обледенения;
• Краткосрочность воздействия (крошка не прилипает ко льду и быстро разносится колесами и ветром);
• Большой расход. (200-700 г/кв.м. за один проход);
• Необходимо использование специальной техники;
• Сложность хранения (материал может смерзаться, слеживаться),
• Оставляют после себя грязь;
• Засоряются ливневые стоки.

● Тепловой способ
Данный способ подразумевает обогрев дорожного покрытия специальными приспособлениями. Нагревательные системы работают по принципу теплого пола и используют в качестве источника тепла – электричество, горячую воду, пар. Способ достаточно эффективен, но его применение на автомобильных дорогах нецелесообразно из-за низкой экономичности. Возможно использование на небольших участках, возле входных групп зданий.

Преимущества:
• Экологичность;
• Мгновенное действие;
• Не допускает образование наледи;
• Дороги остаются всегда сухими.
Недостатки:
• Дорогая установка;
• Дорогая эксплуатация.

● Механический способ
Данный способ подразумевает удаление осадков в зимнее время с помощью ручного труда или специальной снегоуборочной техники. Метод больше подходит для уборки снега, но не особо эффективен для удаления наледи. Добиться хороших результатов возможно, используя механизированную уборку в сочетании с химическими веществами.

Преимущества:
• Экологичность;
• Высокое качество уборки;
• Лед убрать можно даже в самых труднодоступных местах;
• Нет ограничений в погодных условиях.
Недостатки:
• Трудоемкость;
• Требует больших временных затрат;
• Требуется дополнительная техника для вывоза снега.

● Химический способ
Наиболее популярный и эффективный способ устранения наледи – применение противогололедных химических средств. Реагенты способны очищать дорожное полотно до состояния «черного асфальта», как того требует российское законодательство.
Противогололедные реагенты производятся в жидком, твердом и гранулированном виде. Они различаются по составу, бывают одно- и многокомпонентными, по-разному взаимодействуют с наледью, выполняя при этом одну задачу – расплавляют лед до состояния кашеобразного.
Чаще всего используют противогололедные реагенты в состав которых входят соли различных оснований — хлористый натрий, хлористый магний и хлористый кальций. Пропорции данных веществ подобраны таким образом, что применение реагентов эффективно справляется с наледью, не оказывая негативного воздействия на окружающую среду, безопасно для животных, людей. А входящие в состав антикоррозийные компоненты делают их безопасными для автомобилей, дорожных конструкций и сооружений.

Преимущества:
• Доступность;
• Экологичность;
• Безопасность применения;
• Низкие нормы расхода (30-60 г/кв.м. за один проход) ;
• Защита от коррозии.
Недостактки:
• Необходимо строго следить за дозировками;
• Необходима предварительная очистка от снега;
• Противогололедные реагенты «Айсмелт», «Бионорд»

При выборе противогололедных реагентов необходимо учитывать:
— какое влияние оказывают на окружающую среду,
— насколько они безопасны в применении,
— как быстро вступают в реакцию,
— какая норма расхода,
— при каких температурах работают максимально эффективно.

Компания «Чистим» предлагает высокоэффективные антигололедные реагенты марок «Айсмелт» и «Бионорд».
Данные реагенты имеют в своем составе несколько компонентов, подобранных таким образом, что являются максимально безопасными для людей, животных и растений. Реагенты имеют хорошую растворимость, не оказывают негативное воздействие на дорожное покрытие, а специальные добавки предохраняют металлические изделия от коррозии, а обувь и одежду от порчи. Могут использоваться при экстремально низких температурах (до минус 40 градусов). Обладают пролонгированным действием.

По всем вопросам обращайтесь к менеджерам компании.

Наледь — послойное накопление льда, образовавшееся на ледяном покрове водотоков или водоемов, мерзлом грунте или инженерных сооружениях в результате замерзания периодически изливающихся природных или технических вод. Наибольшее распространение наледи имеют в районах с суровым зимним климатом, где встречается многолетняя мерзлота.

Применяют следующие меры борьбы с наледями: общий дренаж, мерзлотные пояса, заградительные сооружения, подъем насыпей, утепление русла водотоков, их углубление, спрямление и расчистку, обогрев водопропускных труб.

Общий дренаж прилегающей к дороге местности может быть выполнен устройством узких (не более 0,5 м) канав с обкладкой дна и стен слоями мха или прокладкой подземных дрен. Поверхностный дренаж имеет ограниченную дренирующую способность и осложняется возможностью замерзания канав. Подземный дренаж, при котором прокладывают гончарные трубы или перфорированные асбестоцементные, эффективно снижает уровень грунтовых вод, но может применяться лишь в районах глубокого сезонного промерзания грунтов. В районах вечной мерзлоты применение подземного дренажа затруднено.

Устройство мерзлотных поясов имеет целью вызвать образование наледи на пути притекающей воды в стороне от дороги на безопасном для нее расстоянии. С этой целью на достаточном расстоянии от дороги роют канаву глубиной 1,2 м и шириной 3…4 м. Под канавой возникает мерзлая перемычка, соединяющаяся с вечной мерзлотой и преграждающая путь грунтовой воде, которая выходит на поверхность и образует наледь. Мерзлотный пояс должен размещаться поперек течения подземных вод и быть достаточно длинным, чтобы наледь не обтекла вокруг его концов и не приблизилась к дороге. При большом притоке делают несколько параллельных мерзлотных поясов на расстоянии от 20 до 80 м один от другого. Чем больше уклон местности в сторону дороги, тем меньше должно быть расстояние между поясами.

Если по каким-либо причинам нельзя создать постоянный мерзлотный пояс, делают простейший, временный, мерзлотный пояс, расчищая от мха и кустарника полосу земли шириной от 3 до 10 м. Временные пояса недостаточно эффективны, и в дальнейшем их следует заменять постоянными.

Мерзлотные пояса в виде канав применяют и для борьбы с речными наледями. Их прокладывают поперек всей речной долины на 80-100 м выше моста. Береговые участки мерзлотных поясов делают летом, а зимой прорубают во льду канавы, представляющие речную часть пояса. По мере промерзания реки канавы углубляют, создавая в реке ледяную плотину, вызывающую образование наледи на безопасном расстоянии от моста.

Заградительные сооружения — земляные валы и дамбы, заборы, бревенчатые барьеры, переносные щиты, валы из снега (обледеневающие после того, как они пропитываются водой) — возводят на пути натечных наледей, чтобы не допустить их к дороге.

Земляные валы и дамбы можно применять не только для того, чтобы остановить наледь, но и для того, чтобы отвести ее от дороги. В этом случае им придают соответствующее очертание и расположение по отношению к дороге.

Увеличение высоты земляного применяют чаще всего при пересечении водотоков с небольшим продольным уклоном и широкой поймой, по которой вода растекается невысоким слоем.

Утепление русла водотоков имеет целью воспрепятствовать охлаждению воды, протекающей через искусственные сооружения. Эта мера целесообразна, если водоток имеет узкое и глубокое русло. Над небольшими речками, ручьями или канавами на утепляемом участке русла укладывают настил из жердей, на который настилают полиэтиленовую пленку или кладут хворост слоем 0,3…0,5 м, а поверх — слой мха толщиной 0,5 м. Все это засыпается снегом. Чтобы накопить снег, можно ставить снегозадерживающие решетчатые щиты, за которыми образуется снежный вал, покрывающий основной материал утепления. Длина утепляемого участка — 50 м в верховую сторону от сооружения и 30…50 м в низовую.

Углубление, спрямление и расчистка русла водотоков позволяют уменьшить растекание воды, препятствуют замедлению ее течения, придают живому сечению потока форму, менее подверженную промерзанию. С этой целью ликвидируют каменистые перекаты, петли, крутые повороты русла, удаляют большие валуны. В местах, где русло большой ширины, его сужают и углубляют, а в очень узких местах несколько расширяют. Работы выполняют гусеничными тракторами с навесным оборудованием для разработки водоносного грунта, бульдозерами, корчевателями-собирателями. Русло выправляют на протяжении до 1 км вверх по водотоку и до 0,5 км в низовую сторону от искусственного сооружения. Помимо выправления русла, принимают меры для собирания растекающейся по пойме воды в единый сосредоточенный поток. С этой целью с верховой стороны устраивают валы из недренирующих грунтов, которые направляют воду в отверстие искусственного сооружения.

Обогрев водопропускных труб для безналедного пропуска водотока использовался на автомобильной дороге Большой Невер — Якутск. Внутри водопропускной трубы прокладывалась обогревающая трубка, в приемную часть которой подается керосин или дизельное топливо и сгорает. Подача жидкого топлива производится из расходного бака через капельницу. Отходящие газы отдают свое тепло наледной воде, которая, благодаря этому, не замерзает и свободно проходит через водопропускную трубу.

На кого ложиться обязанность сбивать сосульки с балконов?

Сбивать сосульки с балконов должны УК, но не всё так однозначно.

Если с вопросом о том, кто должен сбивать сосульки с крыши предельно ясно, то как поступать с балконами непонятно. При обращении в УК жильцу ответят, что раз это его собственность, то заниматься этим вопросом предстоит ему.

На помощь приходит положение постановлении Госстроя РФ от 27 сентября 2003 г. N 170 «Об утверждении Правил и норм технической эксплуатации жилищного фонда». В его пункте 4.6.1.23 обязанность удалять сосульки с балконов жильцов лежит как раз на УК.

Поэтому жильцу нужно поступить следующим образом:

  1. Составить письменное заявление на имя руководителя УК, потребовать в нем убрать наледь с балкона;
  2. Подать обращение лично в УК, потребовав расписаться на втором экземпляре с проставлением даты получения. Альтернативный вариант – выслать заявление ценным письмом с описью вложения и уведомлением о вручении;
  3. Через два-три дня после того, как заявление получено УК, проверить наличие сосулек. Если они остались, составить и направить жалобу в Роспотребнадзор или другие контролирующие органы.

Если не сбивают сосульки, куда жаловаться кроме Роспотребнадзора? В этом случае можно обратиться в администрацию города. Кроме того, заявление можно подать участковому, в отделение полиции, наконец, в прокуратуру.

Жалоба составляется в произвольной форме. Указывается факт обращения в УК, их бездеятельность, а также возможные нежелательные последствия для жизни и здоровья жильцов дома, прохожих, их имущества.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *